WATER SYSTEM INFORMATION: This report describes our water quality and what it means. We are pleased to report that our drinking water meets federal and state requirements. If you have any questions about this report or concerns regarding your water utility, please contact Industry Borough Municipal Authority at (724-643-9522). We want you to be informed about your water supply. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the fourth Tuesday of the month at 6:00 PM at the Industry Water Authority Building located at 1149 East Willowbrook Drive, Industry, PA.

SOURCES OF WATER: Our water source is ground water from two wells located within the Industry Borough jurisdictional limits. We also have an emergency interconnection with Ohioville Borough, from which we did not draw from in 2022. Industry Borough Municipal Authority has a Wellhead Protection Area Delineation and Plan that was completed in September 2007. A complete copy may be viewed at the authority office. Water treatment is limited to chlorination. The water is pumped from the wells to four steel storage tanks: the 100,000-gallon Barclay Hill tank; the 200,000-gallon Allison Drive tank; the 200,000-gallon Engle Road tank; and the 300,000-gallon Willowbrook Drive tank. The final distribution to our customers is by gravity flow from the storage tanks. The aquifer producing the ground water is represented by a glacial outwash valley-fill sequence that occurs within the Ohio River Valley below the Montgomery Dam to 1250 feet above mean sea level at the base on the Willowbrook Drive tank, with the Ohio River Valley representing the primary topographic feature in the area.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

DEFINITIONS AND ABBREVIATIONS:

Action Level (AL) - The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Minimum Residual Disinfectant Level – The minimum level of residual disinfectant required at the entry point to the distribution system.

Treatment Technique (TT) – A required process intended to reduce the level of a contaminant in drinking water.

Level 1 Assessment – A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Mrem/year = millirems per year (a measure of radiation absorbed by the body)

pCi/L = picocuries per liter (a measure of radioactivity) ppb = parts per billion, or micrograms per liter (μg/L)

ppm = parts per million, or milligrams per liter (mg/L).
DETECTED SAMPLE RESULTS:

<table>
<thead>
<tr>
<th>Chemical Contaminant</th>
<th>MCL in CCR Units</th>
<th>MCLG</th>
<th>Highest Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Y/N</th>
<th>Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>2</td>
<td>2</td>
<td>0.112</td>
<td>N/A</td>
<td>(ppm)</td>
<td>12/14/21</td>
<td>N</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2*</td>
<td>2</td>
<td>0.26</td>
<td>N/A</td>
<td>(ppm)</td>
<td>12/14/21</td>
<td>N</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>Nickel</td>
<td>N/A</td>
<td>N/A</td>
<td>0.00103</td>
<td>N/A</td>
<td>(ppm)</td>
<td>12/14/21</td>
<td>N</td>
<td>Leaching from metals in contact with drinking water, erosion in the production of steel alloys.</td>
</tr>
<tr>
<td>Iron**</td>
<td>SMCL 0.30</td>
<td>N/A</td>
<td>0.315</td>
<td>0.00-0.315</td>
<td>(ppm)</td>
<td>12/6/22</td>
<td>N</td>
<td>Naturally occurring mineral</td>
</tr>
<tr>
<td>Manganese**</td>
<td>SMCL 0.05</td>
<td>N/A</td>
<td>0.35</td>
<td>0.0452-0.35</td>
<td>(ppm)</td>
<td>12/6/22</td>
<td>N</td>
<td>Naturally occurring mineral</td>
</tr>
<tr>
<td>Nitrate</td>
<td>10</td>
<td>10</td>
<td>0.98</td>
<td>N/A</td>
<td>(ppm)</td>
<td>10/26/22</td>
<td>N</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>Chlorine (Distribution)</td>
<td>MRDL = 4</td>
<td>MRDLG = 4</td>
<td>0.45</td>
<td>0.26-0.45</td>
<td>(ppm)</td>
<td>2022</td>
<td>N</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Haloacetic Acids (HAA5)</td>
<td>60</td>
<td>N/A</td>
<td>1.22</td>
<td>N/A</td>
<td>(ppb)</td>
<td>9/19/22</td>
<td>N</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>TTHMs (Total Trihalomethanes)</td>
<td>80</td>
<td>N/A</td>
<td>1.77</td>
<td>N/A</td>
<td>(ppb)</td>
<td>9/19/22</td>
<td>N</td>
<td>By-product of drinking water chlorination</td>
</tr>
</tbody>
</table>

*EPA’s MCL for fluoride is 4 ppm. However, Pennsylvania has set a lower MCL to better protect human health.

**Iron and Manganese Maximum Contaminant Levels are based on the Secondary Maximum Contaminant Levels (SMCL) as stated in the Safe Drinking Water Act. These contaminants are regulated differently than contaminants on the primary list.

"If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Industry Borough Municipal Authority is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead."
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban storm water run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA and DEP prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA and DEP regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (800-426-4791).