2022 Annual Drinking Water Quality Report

We're pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality of water and the services we deliver to you every day. Our constant goal is to provide you with a dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water supply comes from 4 wells, and each is treated with chlorine to control microbiological contaminants and caustic soda to control the PH.

Este informe contiene informacion muy importante sobre su agua beber. Traduzcalo o hable con alguin que lo entienda bien.

If you have any questions about this report or concerning your water utility, please contact: Conyngham/Sugarloaf Joint Municipal Authority (CSJMA) Eddie Gregory | Operations Manger 245 Main St. Conyngham, PA 18219 570-788-0608

CSJMA meetings are open to the public and are held every 4th Tuesday online through www.csjma.org at 7:00 P.M. unless otherwise noted in the Standard Speaker.

Conyngham/Sugarloaf Joint Municipal Authority routinely monitors constituents in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st, 2022, to December 31st, 2022. All drinking water, including bottled drinking water, is reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Chemical Contaminants							
Contaminant (Units) (Date)	Violation Y/N	Highest Level Detected	Range	MCL	MCLG	Major Sources in Drinking Water	
Arsenic (ppb) 9/21/21	None	1.65	0.00 to 1.65	10	0	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	
Barium (ppm) 9/21/21	None	0.0112	0.00624 to 0.0112	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	
Cyanide (ppb) 9/21/21	None	15.30	0.00 to 15.30	200	200	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories	
Nickle (ppm) (Not Regulated) 9/21/21	None	0.00164	0.00 to 0.00164	N/A	N/A	Leaching from metals in contact with drinking water, erosion in the production of steel alloys	
Chlorine (ppm) 2022 Distribution System	None	0.69 December	0.37 to 0.69	4	4	Water additives used to control microbes.	
Nitrate (ppm) 4/4/22	None	3.80	0.90 to 3.80	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
Total Trihalomethanes (TTHM) (ppb) 8/15/22	None	22.20	N/A	80	N/A	By-product of drinking water chlorination	

<u>Contaminant</u> Entry Point Chlorine (2022)	Minimum Disinfectant Residual	Lowest Level Detected	Range of Detections	Units	Lowest Sample Date	Violation Y/N	Sources of Contamination
Entry pt. 101	0.20	0.21	0.21 to 1.85		10/10/22	N	
Entry pt. 103	0.21	0.30	0.30 to 1.60		5/18/22	N	
Entry pt. 107	0.20	0.23	0.23 to 1.02	ppm	6/20/22	N	Water additive used
Entry pt. 108	0.34	0.35	0.35 to 1.37		1/20/22	N	to control microbes.
Entry pt. 109	0.20	0.22	0.22 to 1.01		7/10/22	N	

Lead and Copper (Sampled in 2022)								
Contaminant	Action Level (AL)	MCLG	90 th Percentile Value	Units	# of Sites Above AL of Total Sites	Violation Of TT Y/N	Sources of Contamination	
Copper	1.3	1.3	0.482	ppm	0 out of 10	None	Corrosion of household plumbing systems; Erosion of natural deposits	
Lead	15	0	6.3	ppb	0 out of 10	None	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives	

"If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Conyngham Water Company is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

<u>Violations:</u> In January, May & November of 2022 we had reporting errors for entry point and distribution chlorine which has been corrected. We monitored for asbestos in 2020 however reporting was not submitted until 2023 resulting in a violation. In 2022 we sampled late for lead/copper, alfa emitters, combined uranium, and asbestos. A public notification regarding these violations is included at the end of this report.

Water Quality Definitions

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the contaminant is not present at a detectable level.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (μ g/L) - one part per billion corresponds to one minute in 2,000 years or a single penny in \$10,000,000.

pCi/l picocuries per liter (a measure of radioactivity)

Action Level (AL) – the concentration of a contaminant, which if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL)- The highest level of a disinfectant that is allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Minimum Residual Disinfectant Level (MinRDL) the minimum level of residual disinfectant required at the entry point to the distribution system.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Level 1 Assessment – A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Additional Information

As you can see by the table, our system had no violations resulting from contaminated water in 2021. We have learned through our monitoring and testing that some constituents have been detected. These contaminants are listed in the table above. The state allows us to monitor for some contaminants less than once a year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, is more than one year old.

All sources of drinking water are subject to potential contaminants that are naturally occurring or manmade. Those contaminants can be microbes, organic or inorganic chemicals, or radioactive materials. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

-Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- -Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- -Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- -Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial process and petroleum production and mining activities.
- -Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER FAILURE TO MONITOR

ESTE INFORME CONTIENE INFORMACIÓN IMPORTANTE ACERCA DE SU AGUA POTABLE. HAGA QUE ALGUIEN LO TRADUZCA PARA USTED, O HABLE CON ALGUIEN QUE LO ENTIENDA.

Monitoring Requirements Not Met for Conyngham Sugarloaf Municipal Authority

Our water system violated several drinking water standards over the past year. Even though these were not emergencies, as our customers, you have a right to know what happened and what we did to correct these situations.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During 2022 were required to monitor for Lead, Copper, Alpha Emitters, and Combined Uranium, but failed to meet the deadlines and therefore, cannot be sure of the quality of our drinking water during that time. **What should I do?**

There is nothing you need to do at this time.

The table below lists the contaminants we did not properly test for during the last year, how often we are supposed to sample for Lead, Copper, Alpha Emitters, and Combined Uranium, and how many samples we are supposed to take, how many samples we took, when samples should have been taken, and the date on which follow-up samples were taken.

Contaminant	Required sampling frequency	Number of samples taken	When all samples should have been taken	When samples were taken
Lead	Every 3 Years 10 samples	0	6/1/22 to 9/30/22	November 2022
Copper	Every 3 Years 10 Samples	0	6/1/22 to 9/30/22	November 2022
Alpha Emitters	Every 6 Years 1 Sample	0	2022	2/14/23
Combined Uranium	Every 6 Years 1 Sample	0	2022	2/14/23

Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer.

Some people who drink water containing uranium in excess of the MCL over many years may have an increased risk of getting cancer and kidney toxicity.

What happened? What was done?

During 2022 were required to monitor for Lead, Copper, Alpha Emitters, and Combined Uranium, but failed to meet the deadlines. The samples have since been taken.

For more information, please contact Ed Gregory at 570-788-0608.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

This notice is being sent to you from the Conyngham Sugarloaf Municipal Authority

PWS ID#: 2400048