## 2023 ANNUAL WATER QUALITY REPORT

### **Port Matilda Water Works**

#### PWS # 4140088

Este informe contiene informacion muy importante sobre su aqua potable. Traduzcalo o hable con alguien que lo entienda bien. (This report contains important information about your drinking water. Have someone translate it for you or speak with someone who understands it.)

We are pleased to present to you this annual consumer confidence report. This report is designed to inform you about the quality of water and the services we deliver to you every day. Our constant goal is to supply you with a dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and to protect our water resources. We are committed to ensuring the quality of your water. Our water source is 2 municipal ground water wells. The Borough wells are located west of town behind the municipal garage.

#### **WATER SYSTEM INFORMATION:**

This report shows our water quality and what it means. If you have any questions about this report or concerning your water utility, please contact the Port Matilda Borough at 814-692-0092 or go to 400 South High Street, Port Matilda. We want you to be informed about your water supply. If you want to learn more, please attend any of our regularly scheduled meetings. They are held every third Tuesday of the month at 7:00 PM in the Port Matilda Borough Building.

Port Matilda Water Works routinely monitors for contaminants in your drinking water according to Federal and State laws. The table shows the results of our monitoring for the period January 1, 2023 to December 31, 2023.

In these tables, you will find many terms and abbreviations that you may not be familiar with. To help you better understand these terms we have provided the following definitions:

*Parts per Million (ppm) or Milligrams per Liter (mgl)* - One part per million corresponds to one minute in two years or a single penny in \$10,000.

**Parts per Billion** (*ppb*) – One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. **Action Level** (*AL*) - The concentration of a contaminant that, if exceeded, triggers treatment or other requirements, which a water system must follow.

*Maximum Contaminant Level (MCL)* – The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

*Maximum Contaminant Level Goal (MCLG)* – The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

*Maximum Residual Disinfectant Level (MRDL)* – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

*Maximum Residual Disinfectant Level Goal (MRDLG)* – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

*Minimum Residual Disinfectant Level (MinRDL)* - The minimum level of residual disinfectant required at the entry point to the distribution system.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

*Level 1 Assessment* – A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

**Level 2 Assessment** – A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

| Chemical Contaminants               |            |         |                           |                     |       |                |                  |                                                                                                     |
|-------------------------------------|------------|---------|---------------------------|---------------------|-------|----------------|------------------|-----------------------------------------------------------------------------------------------------|
| Contaminant                         | MCL        | MCLG    | Highest Level<br>Detected | Range of Detections | Units | Sample<br>Date | Violation<br>Y/N | Sources of<br>Contamination                                                                         |
| Barium                              | 2          | 2       | 0.105                     | N/A                 | ppm   | 8/19/21        | N                | Discharge of drilling<br>wastes; Discharge from<br>metal refineries; Erosion<br>of natural deposits |
| Haloacetic Acids<br>(HAA)           | 60         | N/A     | 4.00                      | N/A                 | ppb   | 9/7/23         | N                | By-product of drinking water disinfection                                                           |
| TTHMs<br>(Total<br>Trihalomethanes) | 80         | N/A     | 11.30                     | N/A                 | ppb   | 9/7/23         | N                | By-product of drinking water chlorination                                                           |
| Chlorine (Distribution)             | MRDL<br>=4 | MRDLG=4 | 0.45<br>(January 2023)    | 0.45 - 0.34         | ppm   | 2023           | N                | Water additive used to control microbes                                                             |

| Entry Point Disinfectant Residual |                                     |                             |                     |       |                          |                  |                                          |  |
|-----------------------------------|-------------------------------------|-----------------------------|---------------------|-------|--------------------------|------------------|------------------------------------------|--|
| Contaminant                       | Minimum<br>Disinfectant<br>Residual | Lowest<br>Level<br>Detected | Range of Detections | Units | Lowest<br>Sample<br>Date | Violation<br>Y/N | Sources of<br>Contamination              |  |
| Chlorine (2023)                   | 0.40                                | 0.70                        | 0.70-0.99           | ppm   | 5/22/23                  | N                | Water additive used to control microbes. |  |

| Lead and Copper |                   |      |                                      |       |                                       |                  |                                                                                                                 |  |
|-----------------|-------------------|------|--------------------------------------|-------|---------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Contaminant     | Action Level (AL) | MCLG | 90 <sup>th</sup> Percentile<br>Value | Units | # of Sites Above AL of<br>Total Sites | Violation<br>Y/N | Sources of Contamination                                                                                        |  |
| Lead (2022)     | 15                | 0    | 2.30                                 | ppb   | 0 out of 9                            | N                | Corrosion of household plumbing systems; Erosion of natural deposits                                            |  |
| Copper (2022)   | 1.3               | 1.3  | 0.166                                | ppm   | 0 out of 9                            | N                | Corrosion of household<br>plumbing systems; Erosion of<br>natural deposits; Leaching<br>from wood preservatives |  |

#### Information about Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Port Matilda Water Works is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <a href="http://www.epa.gov/safewater/lead">http://www.epa.gov/safewater/lead</a>.

**Violations:** On 6/6/23 we monitored for Distribution Chlorine but failed to report the results to the Pa Department of Environmental Protection by the required due date resulting in a Reporting Violation. In 2023 we were required to sample 30 Synthetic Organic Chemicals (SOC'S) in the 2nd quarter. Six of them (Dalapon, Picloram, Dinoseb, 2,4-D, 2,4,5-TP [Silvex], and Pentachlorophenol) were not sampled until 8/17/23 resulting in monitoring violations. Public Notification regarding these SOC violations is enclosed at the end of this report.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling EPA's Safe Drinking Water Hotline.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline. You may also visit EPA's website at (<a href="https://www.epa.gov/safewater/">www.epa.gov/safewater/</a>).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salt and metals, can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, are byproducts of industrial process and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

It is important to understand that MCLs are set at very stringent levels for health effects. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day, at the MCL level, for a lifetime, to have a one in one million chance of having the described health effect.

# IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER FAILURE TO MONITOR

ESTE INFORME CONTIENE INFORMACIÓN IMPORTANTE ACERCA DE SU AGUA POTABLE. HAGA QUE ALGUIEN LO TRADUZCA PARA USTED, O HABLE CON ALGUIEN QUE LO ENTIENDA.

#### Monitoring Requirements Not Met for Port Matilda Waterworks

Our water system violated a drinking water standard over the past year. Even though this was not an emergency, as our customers, you have a right to know what happened and what we did to correct this situation.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During 2023 we were required to sample 30 Synthetic Organic Chemicals (SOC'S) in the 2nd quarter. Six of them (Dalapon, Picloram, Dinoseb, 2,4-D, 2,4,5-TP [Silvex], and Pentachlorophenol) were not sampled until 8/17/23, and therefore we cannot be sure of the quality of our drinking water during that time. In general, Synthetic Organic Compounds (SOCs) tend to create both acute and chronic health effects and tend to damage the nervous system and kidneys and they may also pose a potential cancer risk.

#### What should I do?

There is nothing you need to do at this time.

The table below lists the contaminants we did not properly test for during the last year, how often we are supposed to sample for Dalapon, Picloram, Dinoseb, 2,4-D, 2,4,5-TP [Silvex], and Pentachlorophenol, how many samples we are supposed to take, how many samples we took, when samples should have been taken, and the date on which follow-up samples were taken.

| Contaminant                                                                                             | Required<br>sampling<br>frequency                           | Number of<br>samples<br>taken | When all samples<br>should have been<br>taken | When samples were taken    |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------|-----------------------------------------------|----------------------------|
| Synthetic Organic Chemicals Dalapon, Picloram, Dinoseb, 2,4-D, 2,4,5-TP [Silvex], and Pentachlorophenol | 1 Sample Every<br>3 Years in the<br>2 <sup>nd</sup> Quarter | 0                             | Between 4/1/23 and 6/30/23                    | 8/17/23<br>With No Detects |

#### What happened? What was done?

During 2023 we were required to sample 30 Synthetic Organic Chemicals (SOC'S) in the 2nd quarter. Six of them (Dalapon, Picloram, Dinoseb, 2,4-D, 2,4,5-TP [Silvex], and Pentachlorophenol) were not sampled until 8/17/23.

For more information, please contact Vance Barndt at 814-692-0092.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

This notice is being sent to you from the Port Matilda Waterworks.

PWS ID#: 4140088